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Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacter-
emia is life threatening and occurs in up to 30% of MRSA bacteremia
cases despite appropriate antimicrobial therapy. Isolates of MRSA
that cause antibiotic-persistent methicillin-resistant S. aureus bacter-
emia (APMB) typically have in vitro antibiotic susceptibilities equiva-
lent to those causing antibiotic-resolving methicillin-resistant S. aureus
bacteremia (ARMB). Thus, persistence reflects host–pathogen interac-
tions occurring uniquely in context of antibiotic therapy in vivo.
However, host factors and mechanisms involved in APMB remain
unclear. We compared DNA methylomes in circulating immune cells
from patients experiencing APMB vs. ARMB. Overall, methylation
signatures diverged in the distinct patient cohorts. Differentially
methylated sites intensified proximate to transcription factor
binding sites, primarily in enhancer regions. In APMB patients, sig-
nificant hypomethylation was observed in binding sites for CCAAT
enhancer binding protein-β (C/EBPβ) and signal transducer/activator
of transcription 1 (STAT1). In contrast, hypomethylation in ARMB
patients localized to glucocorticoid receptor and histone acetyltrans-
ferase p300 binding sites. These distinct methylation signatures were
enriched in neutrophils and achieved a mean area under the curve of
0.85 when used to predict APMB using a classification model. These
findings validated by targeted bisulfite sequencing (TBS-seq) differ-
entiate epigenotypes in patients experiencing APMB vs. ARMB and
suggest a risk stratification strategy for antibiotic persistence in pa-
tients treated for MRSA bacteremia.
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Persistent Staphylococcus aureus bacteremia (SAB) is serious,
common, and potentially lethal (1), particularly when in-

volving methicillin-resistant S. aureus (MRSA). Persistent SAB
occurs when the infecting isolate is not cleared from the blood-
stream, despite appropriate treatment with an antibiotic to which
it exhibits susceptibility in vitro. However, mechanism(s) respon-
sible for antibiotic-persistent methicillin-resistant S. aureus bacter-
emia (APMB) are incompletely understood (2–5). Recent studies
have begun to explore specific host–pathogen interactions in APMB
(6, 7). Bacterial, viral, and parasitic pathogens can directly and in-
directly use cellular methylation machinery to preserve their survival
and as such, can evade clearance by suppressing an effective host
immune system (8). Our discovery that MRSA infection encodes
innate immune memory supports the essential concept of epigenetic
regulation of host defense against this organism (9, 10). Moreover,
we recently reported that a g.25498283A > C polymorphism in
DNA methyltransferase-3A (DNMT3A) differentiates patients ex-
periencing persistent vs. resolving MRSA bacteremia outcomes
(11). These findings support our hypothesis that distinct DNA
methylomes exist in patients infected by MRSA and correspond to
immunologic functions potentially shaping APMB vs. antibiotic-

resolving methicillin-resistant S. aureus bacteremia (ARMB)
outcomes.
DNAmethylation plays a critical role in host immune regulation by

contributing to innate or adaptive gene expression shaping molecular
and cellular plasticity in immune response (12). Mechanistically, the
classical understanding is that DNA hypomethylation at gene pro-
moters enables gene transcription (13), whereas hypermethylation
suppresses gene expression. Moreover, recent discoveries emphasize
how unique DNA methylation patterns may correlate with specific
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disease subtypes and function as clinical indicators (12, 14). Likewise,
bacterial infections are known to modify DNA methylation in host
cells (15–17). Integrating these concepts, in the present study we
analyzed methylome patterns by reduced representation bisulfite se-
quencing (RRBS) in well-characterized, optimally matched APMB
and ARMB patient cohorts to explore our hypothesis that distinct
DNA methylation signatures are associated with clinical APMB vs.
ARMB outcomes. We then assessed whether differentially methyl-
ated sites (DMSs) localized to specific immune functions relevant to
host defense against S. aureus. Next, we applied innovative methods
to resolve specific immune cell subsets enriched in DMS associated
with APMB vs. ARMB. Finally, we utilized targeted bisulfite se-
quencing (TBS-seq) to validate the differentially methylation signa-
tures associated with APMB/ARMB outcomes.

Results
APMB and ARMB Cohorts Exhibit Distinct Demographic and Clinical
Characteristics. The demographic and clinical variables of the study
population are summarized in Table 1. APMB patients exhibited
an increased incidence of death due to S. aureus infection (P =
0.04), a higher risk of metastatic infection (P < 0.001), and longer
length of in-hospital stay (P < 0.001). In contrast, ARMB patients
exhibited greater rates of cure (P = 0.01), neoplasm (P = 0.03),
and recent surgeries (within 30 d prior to SAB; P = 0.02).

RRBS DNA Methylation Signatures Differ in APMB vs. ARMB Patients’
Peripheral Blood. We utilized RRBS to determine if global meth-
ylation profiles distinguished APMB from ARMB. We then built a
classification model based on the DNA methylation levels of all
749,212 5′-C-phosphate-G-3′ (CpG) sites using a logistic regres-
sion with elastic net regularization (18). The performance of the
classification was evaluated by a 10-fold cross-validation of all the
samples, and the average classification accuracy measured by a
receiver operating characteristic (ROC) area under the curve
(AUC) was 0.85 (Fig. 1A, blue bold line). This corresponds to a
sensitivity of 75.7% and a specificity of 84.8% at the optimal
cutoff, which maximized the sum of sensitivity and specificity. To
contrast the classification performances with chance outcomes, we
generated the ROC using randomly shuffled class labels (APMB
and ARMB). As expected, AUC for the randomly shuffled class
labels approximated 50% (Fig. 1A, black bold line). We then used
methylkit (19) to identify methylation patterns associated specifi-
cally with APMB or ARMB.Methylation levels of 276 CpGDMSs
were significantly associated with a persistent vs. resolving out-
come (Fig. 1B and SI Appendix, Table S1). A total of 160 DMSs
reflected relative hypomethylation and 116 DMSs exhibited
hypermethylation in APMB compared with ARMB. Methylation
patterns of the 276 DMSs encompassing 142 samples were then
visualized (Fig. 1C and SI Appendix, Fig. S1). The hierarchical,
agglomerative cluster analysis revealed an APMB cluster (left
branch; containing 96.5% APMB samples) and an ARMB cluster

Table 1. Characteristics of study population

Characteristics APMB, n = 70 ARMB, n = 72 P value*

Age, mean (median), y 61 (62) 61 (61) 0.74
Sex, male/female 38/32 42/30 0.74
Race, Caucasian/African American/unknown or others 32/36/2 34/36/2 0.95
Site of acquisition, hospital acquired/HCA community acquired/non-

HCA community acquired
8/56/6 8/56/8 0.91

Source of bacteremia, endovascular infection/GI or GU infection/
respiratory, lung or skin, soft tissue, joint/bone infection/unknown
or none

23/12/3/19/13 18/11/7/22/14 0.67

Metastatic infection (abscess/arthritis/epidural abscess/meningitis/
vertebral osteomyelitis/nonvertebral osteomyelitis/psoas abscess/
septic emboli/septic thrombophlebitis/kidney abscess/endocarditis/
others)

54 (12/10/5/0/8/9/5/15/8/1/27/4) 28 (9/2/2/0/1/7/2/3/4/2/5/3) 4.14e-06

APACHE II, mean (range) 18 (6–37) 16 (5–36) 0.16
LOS categories, <9/9–14/15–20/>20 d 9/19/19/23 28/22/11/11 9.75e-04
Type of procedures used to treat the infection
Surgical removal of foreign device 33 16 2.55e-03
Surgical debridement 21 8 6.58e-03
Surgical insertion of foreign device 8 4 0.24
Abscess drainage 13 7 0.15
Other 33 34 1.00
Outcome, 90 d
Cure 46 62 0.01
Recurrent SAB infection 12 5 0.07
Death due to SAB infection 10 3 0.04
Death due to other causes 2 2 1.00
Underlying comorbidity
Neoplasm 7 18 0.03
Diabetic 37 42 0.61
Hemodialysis dependent 29 20 0.11
HIV positive 3 1 0.36
Transplant recipient 5 7 0.76
Injection drug use 1 1 1.00
Corticosteroid use, 30 d 16 16 1.00
Surgery past 30 d 11 24 0.02

For metastatic infection, some patients have more than one type of metastatic infection. APACHE II, Acute Physiology and Chronic Health Evaluation II; GI
or GU, gastrointestinal or genitourinary; HCA, health care associated; LOS, length of stay.
*The t test was used for continuous variables; the Fisher’s exact test was used for categorical variables.
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(right branch; containing 82.4% ARMB samples). The algorithm
also clustered DMSs into two major groups consisting of 131
DMSs in cluster 1 (comparatively hypermethylated; mean meth-
ylation levels, 46.8 to 87.3%) or 145 DMSs in cluster 2 (compar-
atively hypomethylated; mean methylation levels, 16 to 64.6%).
To further investigate the differential methylation profiles fo-

cusing on sequence elements containing more than one CpG site
(two or more CpG sites per region), CpG sites were clustered into
126,144 regions using the dynamic fragments method in CGmapTools
(20). A classification model was then used to construct the 126,144
regions. The average AUC generated from 10-fold cross-validation
using true class labeling was 0.88 (SI Appendix, Fig. S2A), with a
sensitivity of 0.81 and a specificity of 0.85 at the optimal threshold.
There were six CpG regions significantly associated with an APMB vs.
ARMB outcome based on the methylkit analysis (SI Appendix, Fig.
S2B and Table S3). All six of these differentially methylated regions
(DMRs) were captured with at least one CpG site in the 276 identified
DMSs. Together, these data reveal significant methylation signature
differences in patients experiencing APMB vs. ARMB outcomes.

Specific DMSs Prioritize Differential APMB vs. ARMB Signatures in a
Classification Model. To evaluate and rank DMSs based on their
discrimination power to identify APMB, we used the 276 DMSs to
build a logistic regression model with elastic net regularization.
A wrapper method (21) was used to iteratively concentrate the
parsimonious subsets of DMSs with high absolute model

coefficients and censor DMSs with low discriminating capability.
Box plots summarize the results of this process by reporting AUC
generated from each iteration (Fig. 2A). Average AUC with true
labels systematically increased, as DMSs with high discriminating
ability were concentrated, and peaked when including 16 specific
DMSs. We contrasted the DMS performances with chance out-
comes by calculating the AUC for randomly permuted class labels
(APMB and ARMB), which approximated 50%, as expected. Next,
we evaluated the classification performance of the top 16-ranked
DMSs by 10-fold cross-validation. The average AUC for the clas-
sifiers built based on the DNA methylation levels of the top
16-ranked DMSs was 0.98 (Fig. 2B), corresponding to a sensitivity
of 91.4% and a specificity of 98.9% at the optimal cutoff. By cal-
culating the odds ratio using the model coefficients, nine DMSs
(odds ratio > 1) were positively associated with APMB, while an-
other seven DMSs (odds ratio < 1) were negatively associated with
APMB (Fig. 2C). Thus, even with the degree of overfitting, these
data suggest that DNA methylation profiles can aid in or even
predict APMB classification, given methods of our unbiased clas-
sifier in which DMSs were selected based on all the samples.

DMSs Are Enriched in Introns and Intergenic Regions. Next, we inves-
tigated the immunological relevance of the principal 276 DMSs
identified. First, we explored whether the DMSs localized to pro-
moter regions with potential to directly regulate gene transcription.
Here, distances between a target DMS and the transcription start

Fig. 1. Peripheral blood leukocyte DNA methylation is altered in patients with APMB. (A) ROC curve summarizes the test set classification performance
(estimated by 10-fold cross-validation) of a logistic regression model that uses the DNAmethylation levels of 749,212 CpG sites to distinguish APMB and ARMB
samples. (B) Volcano plot represents the methylation difference for 749,212 CpG by delta methylation (percentage) and –log10 adjusted P value (FDR)
generated from methylkit. The cutoff to define DMS (orange dots) was set as FDR < 0.01 and |delta methylation| > 10%. (C) The heat map displays DNA
methylation for DMS (row) across all SAB samples (column). The clusters were generated using the sex-, race-, and batch-corrected DNAmethylation data with
Ward.D2 method shown in SI Appendix, Fig. S1. Keeping the same clustering order shown in SI Appendix, Fig. S1, the standardized DNA methylation (z score)
was applied to visualize the relative methylation differences in this figure.
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sites of its proximal genes were determined (SI Appendix, Table S2).
We found that DMSs are significantly enriched 5 to 50 kb upstream
and >50 kb downstream relative to transcriptional start sites (TSSs)
and largely depleted between 5 kb upstream and 5 kb downstream
to the TSS (Fig. 3A). Another view of the genomic distribution for
DMSs revealed enrichment of DMSs at introns and intergenic re-
gions, with significant depletion 1 to 10 kb upstream of TSS, 5′

untranslated region (UTR), and coding sequence exon regions
(Fig. 3B). Together, these results indicate that the differential DMSs
in APMB vs. ARMB are enriched at regions distal to promoters.

DMSs Localize to Regulatory Regions Containing Relevant Transcription
Factor Binding Sites. To further explore the link between differen-
tial methylation and regulation of gene expression, we analyzed

Fig. 2. Specific DMSs prioritize differential APMB vs. ARMB signatures in a classification model. (A) Evaluation set performance of the logistic regression
classifiers, in order of decreasing number of DMSs used in model construction, from left to right (x axis). Red box–whisker plots show the quartiles of 10 AUC
values generated from 10-fold of leave one class out cross-validations, and blue box–whisker plots depict the performance based on permuted class labels to
represent the random background distribution. (B) ROC curve of the logistic regression model that uses the DNA methylation levels of the top 16-ranked CpG
sites to distinguish APMB and ARMB samples. (C) Plots depicting the mean with 95% CI of odds ratio for the top 16 DMSs in the model shown in B.
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DMS enrichment in transcription factor binding sites. To this end,
we used Locus Overlap Analysis (LOLA) (22) to comparatively
overlay the DMS locations with experimentally validated chro-
matin immunoprecipitation sequencing (ChIP-seq) peaks (SI Ap-
pendix, Table S4). Significant overlap (P < 0.05) was observed
between the DMS and specific transcription factor binding
sites, including the signal transducer/activator of transcription 1
(STAT1), histone acetyltransferase p300 (p300), CCAAT en-
hancer binding protein-β (C/EBPβ), and glucocorticoid receptor
(GR) (Fig. 4A).
Since DNA hypomethylation at a transcription factor binding

motif is often associated with increased transcription factor
binding and gene expression, we investigated methylation levels of
DMS with potential transcription factor binding sites. We calcu-
lated the delta methylation levels of DMS with at least one overlap
with transcription factor binding site (n = 16) and annotated this
mapping with transcription factor binding enrichment (Fig. 4B).
This analysis revealed 11 DMSs with hypomethylation in APMB,
and 5 DMSs having hypomethylation in ARMB. Nine of the 11
DMSs hypomethylated in APMB overlapped with transcription
factor binding sites C/EBPβ, and 3 of 11 overlapped with those for
STAT1. These genes are well-established regulators of immune
and antimicrobial host defense responses (23, 24). Similarly, all
five DMSs with hypomethylation in ARMB overlapped with
transcription factor binding sites for GR, known to regulate stress
responses to sepsis (25, 26). p300 functions as a coactivator by
interacting with several transcription factors including GR to in-
crease gene expression (27). The distributions of DNA

methylation in each cohort of patients are summarized in Fig. 4 C
and D, segregated by directionality of change in methylation levels
relative to APMB vs. ARMB.
For the 11 DMSs with reduced methylation levels in APMB, we

observed a populational shift, suggesting overall increased im-
munologic functions orchestrated by the binding of C/EBPβ and
STAT1 in APMB patients (Fig. 4C). For the five DMSs having
hypomethylation in ARMB, the individual DNA methylation levels
ranged from 0 to 100% among SAB patients, demonstrating high
methylation variability at the GR and p300 transcription factor
binding sites. Specifically, we observed a shift toward M-shaped
distributions in ARMB, resulting from a larger subgroup (24 to
29%) of ARMB patients with hypomethylated DMS (Fig. 4D). This
result suggested that there was a larger subgroup of ARMB patients
with immune cells accessible for GR and p300 transcription factor
binding. Collectively, these data demonstrate two distinct DNA
methylation patterns at transcription factor binding motifs differ-
entiating APMB from ARMB.

Differential Methylation Is Enriched in Myeloid Lineages of APMB vs.
ARMB Patients. To investigate whether the 16 transcription factor
binding DMSs are located at imputed enhancer regions, we
searched for enhancers reported in the GeneHancer database
(28). We confirmed a total of six imputed enhancers reported in
GeneHancer associated with nine transcription factor binding
DMSs (Table 2). Four of 11 DMSs exhibiting hypomethylation in
APMB localized at imputed enhancer regions known to regulate
SETD6, ADGRG1, and SLC7A5 proteins involved in innate
immune cell signal transduction. All five DMSs having hypo-
methylation in ARMB (two DMSs located at chromosome 19;
three DMSs located at chromosome 22) were associated with two
enhancers, which regulate lysosome-membrane protein (CTNS) or
extracellular matrix protein (FBLN1), respectively.
As transcription factor binding patterns are typically cell-type

specific (29, 30), we analyzed whether the 16 transcription factor
binding DMSs are enriched in specific cell populations. Meth-
ylation data from healthy human adult blood cells were obtained
through the Blueprint Human Blood Cell Epigenome project
(31). To ensure high-confidence leukocyte-specific DNA meth-
ylation data, we included CpG sites with at least 10-read cover-
age across all 37 leukocyte samples (SI Appendix, Table S5) in
this analysis (10 of 16 DMSs). All 10 DMSs with validated data
quality exhibited hypomethylation in the myeloid lineages as
compared with cell types from lymphoid lineage (Fig. 5A).

Cell-Type Proportions Estimated from DNA Methylation Differentiate
APMB from ARMB. To address the possibility that DNAmethylation
levels could vary due to changes in cell-type abundance across
individuals, analyses were performed to assess cellular composi-
tion in blood samples in APMB and ARMB patients. A cell-type
deconvolution method was used to estimate cell-type proportions
(32–34). This approach obviated potential bias with respect to
missing complete blood count data in the study cohort (up to
57%). The DNA methylation-based cell-type decomposition
analysis results confirm that estimated cell-type compositions in
APMB and ARMB groups had significant differences in relevant
cell subsets (multivariate ANOVA, P = 0.004). We found signif-
icantly higher neutrophils (adjusted P value = 0.003), lower B cells
(adjusted P value = 0.026), and lower CD8+ T cells (adjusted
P value = 0.02) associated with APMB outcome (Fig. 5 B and C).
Incorporating estimated cell-type composition into the logistic
regression model, we obtained average AUC equal to 0.87 (SI
Appendix, Fig. S3), suggesting that cell-type composition had only
a minor effect on improving classification.

TBS-seq Confirmed the Disease-Associated Differential DNA Methylation
Signatures. To further validate the DMS identified by RRBS, we
carried out TBS-seq (35). A panel of probes was designed to target

Fig. 3. DMSs are enriched in introns and intergenic regions. (A) Distance of
DMSs (foreground) to the TSSs of the proximal genes. Background was de-
fined by total detected CpG sites excluding DMS sites. The statistics were
calculated using χ2 test with Yates’ correction. (B) DMS locations in genomic
regions. (CDS, coding sequence; UTR, untranslated region; TSS, transcrip-
tional start site; TES, transcriptional end site.) The statistics were calculated
using Fisher’s exact test. (ns, not significant; *P < 0.05; **P < 0.01; ***P <
0.001; ****P < 0.0001.)
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Fig. 4. DMSs localize to regulatory regions containing transcription factor binding sites. (A) LOLA region set enrichment analysis displays the significant
associations (P < 0.05) between transcription factor binding sites (y axis) and DMS. The area of points represents the magnitude of odds ratio (a value of zero
is mapped to a size of zero). (B) The heat map shows the overlap of DMS with transcription factor binding sites that LOLA analysis of the ChIP-seq datasets
identified as enriched. Columns were arranged by hierarchical clustering with Ward.D2 method based on the methylation profiles of the 16 transcription
factor binding DMSs across all SAB patients. (C and D) Violin plots of methylation levels for (C) DMS with reduced methylation in APMB and (D) DMS with
reduced methylation in ARMB. Overlap with transcription factor binding site shown as + for yes and − for no. Frequency of patients with hypomethylated
DMS (<25% methylation level) in APMB and ARMB shown as number (percentage).
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the DMS and DMR identified by RRBS (SI Appendix, Table S6).
Both DNA methylation and genetic data were computed from the
bisulfite converted reads aligned to the genome. The intersecting
CpG methylation data generated using TBS-seq showed significant
correlation between the two techniques (SI Appendix, Fig. S5B) and
with the MRSA disease-associated DMS detected by RRBS
(Fig. 6A). Overall, there was excellent concordance between out-
comes of the two methods. As an example, all three of the DMSs
positively associated with APMB by RRBS (Fig. 2C) for which
probes could be designed were confirmed by TBS-seq (Fig. 6B).
Furthermore, all seven hypomethylated DMSs (Fig. 4C) and five
hypermethylated DMSs associated with transcription factor binding
for GR, C/EBPβ, and/or STAT1 (Fig. 4D) were confirmed in the
TBS-seq data (Fig. 6C). The performance of the classification of the
121 DMSs overlapping between TBS-seq and RRBS was evaluated
by a 10-fold cross-validation. The average classification accuracy
resulted in an AUC of 0.90 for TBS-seq (Fig. 6D) and 0.93 for
RRBS (Fig. 6E), confirming that these DNAmethylation signatures
differentiate APMB from ARMB.
To determine if the disease-associated DMRs overlap with ge-

netic polymorphisms that may be attributable to disease pheno-
type, we analyzed the sequence of the AA, AG, and GG alleles
based on reads mapping to the forward strand and CC, CT, and TT
alleles based on reads mapping to the reverse strand. Genotypes
were determined for the majority of alleles in our target regions by
correlating the observed counts with the expected counts for each
allele combination (Materials and Methods). Fisher’s exact test was
computed for each single-nucleotide polymorphism (SNP) geno-
type, and the adjusted P values were calculated based on the false
discovery rate (FDR) methods. Of the 774 SNP genotypes that
were identified within the targeted regions, no significant statistical
associations were found between APMB/ARMB outcomes (SI
Appendix, Table S7). This pattern of results signifies that epige-
netic, not genetic, determinants accounted for these distinct out-
comes of MRSA bacteremia.

Discussion
The current study compared DNA methylomes in whole-blood
leukocytes from patients with APMB and ARMB to assess if
differential methylation signatures exist and if so, whether such
epigenetic signatures associate with relevant immune functions.

Key findings revealed significant differences of DMSs in APMB
vs. ARMB patients and localized predominant signals proximate
to transcription factor binding sites of genes known to influence
immune functions. These data strongly support our hypothesis
that differential methylation in circulating immune cells may
shape protective vs. nonprotective responses during early stages
of MRSA bacteremia that affect ensuing APMB vs. ARMB
outcomes. These insights serve as a proof of concept that DNA
methylation profiles within host immune cells may aid in APMB
classification or predict therapeutic outcomes.
Our findings emphasize that epigenetic regulation correlates

with protective immunity in response to S. aureus infection.
Importantly, DMSs identified were enriched at gene enhancers
known to regulate transcription factor binding sites and control
cell type-specific gene activation or repression (36, 37). DNA
hypomethylation at gene enhancers can switch such enhancers
to an active state (38), resulting in enhanced transcription
factor binding and gene expression. Our results demonstrated
two groups of transcription factor binding patterns associ-
ated with significant differences in leukocyte methylation ass-
ociated with APMB. In turn, these patterns offer plausible
mechanistic roles of these transcription factors in the development
of APMB.
First, our data support the concept of emergency granulopoiesis

in APMB. We observed 11 DMSs exhibiting hypomethylation in
APMB, 9 of which were bound by C/EBPβ. The C/EBPβ protein is
a key transcription factor in emergency granulopoiesis, rapidly
mobilizing bone marrow granulocyte progenitors during severe
systemic infection (23, 39). Additionally, C/EBPβ amplifies
emergency granulopoiesis by inducing FancC expression in in-
fection (39). In support of this finding, up-regulation of C/EBPβ
transcripts is observed in granulocyte progenitors, and C/EBPβ-
deficient progenitors have impaired pathogen-induced gran-
ulopoiesis in vitro and in vivo (23). Because immature neutrophils
(e.g., band cells) may be ineffective at killing S. aureus or may
promote harmful nonspecific inflammation, ostensibly they may
be adverse in resolving SAB, facilitating persistence. Further studies
are needed to determine if APMB patients have increased release
of early granulocyte precursors during MRSA bacteremia.
Second, the polarization of CD4+ T helper (Th) cells during

early stages of SAB may be critical in determining subsequent

Table 2. DMSs localizing to enhancers as identified from the GeneHancer databank

DMS GH identifier
Enhancer
score GH sources

No. of putative
transcription factor binding

sites Putative gene targets

chr16_87808561 GH16J087805 2 FANTOM5, Ensembl,
ENCODE, dbSUPER

171 8 genes (ENSG00000260177, SLC7A5,
LOC101928659, CTU2, ZC3H18,
ZCCHC14, RNF166, MIR6775)

chr16_57893654 GH16J057891 1.5 FANTOM5, ENCODE,
dbSUPER

142 13 genes (RSPRY1, ADGRG3, CSNK2A2,
SETD6, KIFC3, LOC388282, CNGB1,
ADGRG1, CNOT1, CFAP20, ZNF319,
GC16P057890, GC16P057897)

chr19_48573344,
chr19_48573429

GH19J048572 1.4 Ensembl, ENCODE,
dbSUPER

121 3 genes (SULT2B1, DKKL1, SPACA4)

chr17_3641938 GH17J003639 1 ENCODE 108 3 genes (CTNS, TAX1BP3,
LOC105371493)

chr21_34595581 GH21J034589 0.9 ENCODE, dbSUPER 20 7 genes (RCAN1, KCNE1, FAM243A,
MRPS6, GC21M034577,
GC21M034614, GC21M034615)

chr22_45585413,
chr22_45585505,
chr22_45585567

GH22J045584 0.8 ENCODE, dbSUPER 9 6 genes (LINC01589, PIR61892,
GC22M045121, GC22M045550,
FBLN1, GC22P045074)

GH, GeneHancer; FANTOM5, Funational annotation of the mammalian genome project; Ensembl, Ensembl gene annotation; dbSUPER, Database of
super-enhancers,
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APMB from ARMB outcomes. For example, Th17 responses
during S. aureus infection are important for protective immunity, as
the cytokines interleukin-1 (IL-1) and IL-17 mediate neutrophil

recruitment and activation necessary for bacterial clearance (40,
41). However, the present results in APMB patients reveal hypo-
methylation at transcription binding sites for STAT1 (Th1 pro-
moting), not STAT3 (Th17 promoting). Importantly, STAT1
induces gamma interferon signaling during infections (42, 43) but
counterregulates Th17 polarization (44). Incorporating these
findings, we posit that APMB may result in part from a profusive
epigenetic activation of STAT1, which in turn, suppresses protec-
tive antistaphylococcal immune response mechanisms induced via
Th17 pathways. This phenomenon is also consistent with inade-
quate neutrophil-mediated protection associated with emergency
granulopoiesis.
Third, we identified five GR transcription factor binding sites to

be hypomethylated in the ARMB patient cohort. Glucocorticoid-
mediated homeostasis is important in the stress response to sepsis
by modulating excessive proinflammatory activities through inac-
tive activator protein-1 (AP-1) or nuclear factor kappa B (NF-κB)
(25). In this respect, activated GR can directly engage its coac-
tivator p300 to regulate GR signaling. Thus, our data suggest a
mechanistic link between GR–p300 signaling and ARMB, in
which modulated immune responses facilitate bacteremia resolu-
tion. While glucocorticoids are often used in therapy of infections
involving the central nervous system, uncertainty remains about
their use as adjuvant therapy for bacteremia and sepsis (45).
Previous studies suggest that distinct GR expression levels in
septic patients may contribute to treatment responsiveness (46,
47). Our results showing diverse DNA methylation levels in GR
transcriptional binding sites among SAB patients may offer further
insights into patient responses to glucocorticoid therapy through
epigenetic regulation of glucocorticoid response.
Finally, current data reveal important insights into diversity

of biological responsiveness to S. aureus infection based on in-
terindividual variance of methylomic signatures. We recently
identified a genetic polymorphism located in the DNMT3A gene
(g.25498283A > C genotype), which correlates with resolving MRSA
bacteremia outcomes, potentially via hypermethylation gene regula-
tion resulting in reduced IL-10 levels (11). Furthermore, circulating
immune cell-type profiles are dynamic and may also influence
differences in methylation patterns of immune cells in APMB vs.
ARMB. For example, DNA methylation in human hematopoietic
development is affected by adaptive changes in lineage of specific
immune cell subsets (29, 30). Our current results highlighted that
the majority of transcription factor binding DMSs were deme-
thylated in neutrophils. Therefore, this observation suggests that
overall differences in methylation result from a higher proportion
of DMSs in circulating neutrophils or band neutrophils in APMB
compared with ARMB. This conclusion is also highly consistent
with our present findings regarding C/EBPβ and STAT1 methylation
signatures with respect to neutrophils.
It is important to note that differential methylation using RRBS

analysis can potentially be confounded by the presence of single-
nucleotide variants in cis. To validate our initial RRBS findings,
TBS-seq was performed. Findings from TBS-seq strongly sup-
ported the interpretation that disease-associated interindividual
differences were only driven by changes in DNA methylation
levels and not SNPs found in our target regions. Notwithstanding
this key finding, it should also be understood that variation in gene
sequence can influence persistent vs. resolving MRSA bacteremia
outcomes (11). Thus, it is plausible that both epigenetic and ge-
netic signatures are associated with APMB/ARMB outcomes in
MRSA bacteremia.
Initial results raised the possibility that cellular composition

profiles could be influencing APMB classification. Importantly,
methylation variability may result from several potential factors,
including 1) direct changes of methylation levels at a regulatory
element in one or more specific cell type(s) or 2) altered cell-
type compositions indirectly impacting methylation levels at a
cell type-specific regulatory element (29, 30). To explicitly

Fig. 5. Cell-type proportions estimated from DNA methylation differenti-
ating APMB from ARMB. (A) Cell type-specific methylation levels obtained
from Blueprint for the transcription factor binding DMS. B, B cell; bN, band
neutrophil; mN, mature neutrophil; Mo, monocyte; NK, natural killer cell. (B
and C) Box plots of proportions of each cell type within APMB/ARMB groups. The
FDR-corrected ANOVA test within each cell type was used, and the adjusted
P values smaller than 0.05 are highlighted in red. (B) The proportions of estimated
neutrophils, lymphocytes (combining the estimated proportions of B, CD4+ T,
CD8+ T, and NK cells), and Mos within APMB/ARMB groups. (C) The proportions
of estimated lymphocytes (including B, CD4+ T, CD8+ T, and NK cells).
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segregate these two potential sources of variability, obtaining cell
composition information is required. Given the limitation that
complete blood counts were not available from every patient
studied, we employed a method to correct methylation profile
data based on potential cell-type composition. We found that the
cell-type abundances were similar between the persistent and re-
solving groups. However, some of these differences achieved sta-
tistical significance for relevant immune cell subsets. Moreover, we
demonstrated that our classification model, which has an AUC =
0.85 without accounting for cell-type composition, is only modestly
improved by explicitly including inferred cell-type abundances as
covariates. These results support the conclusion that methylation
differences, comprising both disease- and cell type-associated
features, may be useful to develop an agnostic algorithm to in-
form or predict clinical outcomes in MRSA bacteremia patients.
Whether the host, pathogen, or a combination of the two

drives differential methylation is the key question that remains to
be determined. Pathogens may drive alterations of DNA meth-
ylation in host immune cells, supporting the emerging concept of
innate immune memory (48–50). For example, Mycobacterium
tuberculosis (15) andHelicobacter pylori (51) have been reported to
subvert host DNA epigenetics through ten-eleven translocation
(TET) enzyme family and inducing de novo DNA methylation.
One recent observation further supported this concept that DNA
demethylation was induced after M. tuberculosis infection (52).
Thus, it is possible that the host epigenetic changes identified

in the current study were driven by prior episodes of infection,
S. aureus or otherwise.
It is also important to note the limitations of the current inves-

tigation. First, this study was not designed to explicitly determine
APMB vs. ARMB outcome-associated SNPs, and it is challenging
to accurately identify the heterozygous single-nucleotide variants
(SNVs) from partially C to T converted sequences in the bisulfite
conversion conditions. Second, our annotation analyses were limited
by the scope of data available in the University of California Santa
Cruz (UCSC) genome browser, the Encyclopedia of DNA Elements
(ENCODE), and the CODEX databases, which are largely gener-
ated from uninfected human cell lines. Third, the current SAB
classification model has not been evaluated using an external vali-
dation cohort. However, a principal goal of this study was to compare
RRBS sequencing data and methylation characteristics in SAB pa-
tients experiencing APMB vs. ARMB outcomes. Thus, we demon-
strate findings not available from any prior investigation to our
knowledge, namely genome-wide methylation signatures associated
with persistent outcomes in MRSA bacteremia. Fourth, precise im-
pact of the methylation patterns uncovered in this study requires
future investigation.While hypomethylation is generally felt to promote
gene expression, recent studies have challenged this view. For
example, Pacis et al. (52) suggest that gain or loss of methylation
may be associated with increased transcriptional activity, particu-
larly at nonpromoter, enhancer regions. Finally, the current study
focused on patients with clinically confirmed MRSA bacteremia
receiving appropriate vancomycin therapy over a 5-d course.

Fig. 6. TBS-seq confirmed the disease-associated differential DNA methylation signatures. (A) Scatterplots of the delta methylation (APMB–ARMB) in RRBS (x
axis) and in TBS-seq (y axis). (B and C) Violin plots of methylation levels in RRBS and TBS-seq for (B) top-ranked DMSs reported in Fig. 2 and (C) transcription
factor binding DMSs reported in Fig. 4. Two-way ANOVA was used to determine the disease associated (P value shown). (D and E) ROC curves of the logistic
regression model that uses the DNA methylation levels of 121 detected DMSs from (D) TBS-seq and (E) RRBS.
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Whether the specific epigenetic pattern differences are the same in
such patients treated with other antibiotic regimens remains to be
determined. In this respect, the current study establishes an important
reference point. Thus, our ongoing efforts are focused on determining
the impact of methylation status on expression of key immune system
genes and their expression in MRSA infection and beyond.
In summary, the current findings support a proof of principle

that DNA methylation signatures in host immune effectors can
differentiate persistent vs. resolving outcomes in MRSA infection.
Moreover, specific DMSs identified correspond to immune cell
regulatory functions of direct and established relevance to host
defense against S. aureus. The fact that targeted methods validated
general methods suggests that targeted methods may be readily
developed into much more expedient and practical assays for
rapid assessment of likelihood for persistent MRSA bacteremia
outcomes. In turn, such knowledge could guide interventions that
minimize likelihood for such adverse outcomes. These concepts
could also logically extend to many other types of infections. The
implications for future studies include testing the predictive value
of targeted CpG sites for APMB detection, as well as studying
in vivo how DNA methylation correlates with gene expression in
specific cell subsets and in context of antiinfective therapy.

Materials and Methods
Case Selection. All human studies were conducted in accordance with Good
Clinical Practice and Human Subjects Research as approved by the Duke Uni-
versity Medical Center (DUMC) Institutional Review Board. SAB cases were
evaluated and consented for enrollment in the S. aureus Bacteremia Group
(SABG) biorepository at DUMC. Cases for the current study were carefully se-
lected based on the following inclusion criteria: laboratory-confirmed MRSA
bacteremia, received appropriate vancomycin therapy, and enrolled in the
SABG study between 2007 and 2017 (to ensure contemporary medical prac-
tices). APMBwas defined in patients who had continuous MRSA-positive blood
cultures for at least 5 d after vancomycin antibiotic treatment (11); ARMB
patients had initial blood cultures that were positive for MRSA, but the sub-
sequent blood cultures became negative. Thus, epigenetic methylome pat-
terns in this study focused on circulating host immune cells proximate to the
time of SAB diagnosis. Stratified propensity scoring was used to match the
demographic and clinical variables for selection of APMB vs. ARMB cases, in-
cluding race, sex, age, dialysis, diabetes diagnosis, and/or presence of in-
dwelling device (artificial heart valve, peritoneal dialysis port, central venous/
arterial catheter, or left ventricular assist device) and vancomycin treatment.
This case-controlled study was based on a total of 142 SAB samples (70 APMBs
and 72 ARMBs) with matched criteria and qualified DNA quality control. De-
tails of clinical characteristics of the study cohort are presented in Table 1.

RRBS. RRBS libraries were prepared as described previously (53) and se-
quenced by University of California, Los Angeles, Broad Stem Cell Research
Center (BSCRC) sequencing core. The data were subjected to a quality con-
trol step using FastQC (version 0.11.7) (54). Sequencing data were trimmed
to remove the adaptors and the terminal CG nucleotides using the trim-
momatic software (version 0.38) (55). The reads were aligned to the human
genome GRCh38/hg38 (release 93, downloaded from Ensembl), and DNA
methylation levels were determined using the BS-Seeker2 pipeline (56). Data
were filtered to include the autosomal CpG sites with at least 15-read cov-
erage across all samples, and the potential confounding factors, including
batch, race, and sex, were accounted for by using an empirical Bayesian
framework, as implemented in the ComBat function of R package SVA as in
previous reports (30, 57). Details are in SI Appendix.

TBS-seq. A total of 1,117 probes were designed by Integrated DNA Tech-
nologies based on the coordinates of the DMSs we discovered using RRBS

data. The libraries were prepared as described in SI Appendix. Data were
preprocessed with FastQC (version 0.11.8) and cutadapt (version 2.10) to
remove the adapter sequences. Trimmed reads were aligned against the
GRCh38 genome using BSBolt (58) according to the pipeline described in ref.
35. Methylation was called on aligned reads after PCR duplicates removal,
and the DNA methylation matrix was assembled using the common CpG sites
covered by at least 20 reads across all samples. A total of 3,614 intersecting
CpGs detected from both RRBS and TBS-seq were collected, which included the
121 DMSs and five DMRs reported from RRBS. The correlation between data
generated from the two methods was computed, and the two-factor ANOVA
was used to determine the statistical difference among factors including the
disease outcomes and techniques. The genotype data were generated as de-
scribed in SI Appendix. Fisher’s exact test was used to determine the associa-
tion between SNP genotypes and APMB/ARMB outcomes.

Classification of Patients. Logistic regression was used to build a classifier using
the Python package, scikit-learn version 0.21.2. A regularization method elastic
net (18) was incorporated in the classification model to build a generalizable
classifier and reduce model overfitting. All RRBS-detected 749,212 CpGs were
included in the optimization phase using both precision and recall score for
the model evaluation. Then, the classifiers were trained and tested using a
10-fold cross-validation strategy. ROCs were used to estimate the sensitivity
and specificity of the APMB classification method. The AUC was calculated for
each ROC to evaluate the accuracy of APMB classification.

CpG Clustering and Identification of DMSs and Regions. The clustered CpG
regions were generated based on the dynamic fragmentation strategy in
CGmapTools (20) (with the following parameters: maximal distance between
two adjacent CpGs, s = 100 bp; maximal fragment size, S = 1,000 bp; minimal
CpG number in one fragment, n = 2) The matrix of the single CpG site or the
clustered CpG region was then used to calculate the differential methylation
sites using the methylkit package in R (19). The cutoff of q value < 0.01 and
methylation difference larger than 10% were used to define DMSs.

Genomic Landscape of DMS. The DMS distances to TSSs were determined using
the Genomic Regions Enrichment of Annotations Tool (http://great.stanford.
edu/public/html/) (details are in SI Appendix), and the genomic distribution
was determined by using the script of read_distribution.py file with the
reference file (hg38_RefSeq.bed) in the software package, RSeQC (version
2.6.4). LOLA (22) was to identify significant overlaps of DMS regions with
transcription factor binding sites based on ChIP-seq datasets obtained from
ENCODE (59) and CODEX (60) databases. The Fisher’s exact test was used
with a significance threshold of 0.05 on FDR-adjusted P values. The whole-
enrichment results together with their original and curated annotations are
presented in SI Appendix, Table S4.

Cell Type-Specific DNA Methylation. The DNA methylation data (data type:
methylation signal) for specific leukocytes were downloaded from Blueprint
Epigenome Project DCC portal (31). The analysis was performed using the
selected 37 Blueprint Bisulfite-Seq experiments (SI Appendix, Table S5). The
low-coverage CpG sites (<10-read coverage) in each sample were first ex-
cluded, and intersection against the genome-wide locations of autosomal CpG
sites was performed, resulting in a total of 4,861,556 CpG sites. The details are
in SI Appendix.

Data Availability. The DNA methylation sequence data reported in this paper
have been deposited into the Gene Expression Omnibus (accession no.
GSE150144). All other data, associated protocols, and materials used in this
work are described in the paper.
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